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ABSTRACT
Memory integrity trees are widely-used to protect external memories

in embedded systems against bus attacks. However, existing methods

often result in high performance overheads incurred during memory

authentication. To reduce memory accesses during authentication,

the tree nodes are cached on-chip. In this paper, we propose a cache-

aware technique to dynamically skew the integrity tree based on the

application workloads in order to reduce the performance overhead.

The tree is initialized using Van-Emde Boas (vEB) organization to

take advantage of locality of reference. At run time, the nodes of

the integrity tree are dynamically positioned based on their memory

access patterns. In particular, frequently accessed nodes are placed

closer to the root to reduce the memory access overheads. The pro-

posed technique is compared with existing methods on Multi2Sim

using benchmarks from SPEC-CPU2006, SPLASH-2 and PARSEC

to demonstrate its performance benefits.
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1 INTRODUCTION
Main memories, being an integral part of all embedded systems,

become an obvious target for attackers whose motives are to exploit

leakage or modification of information. Integrity trees are commonly

used to provide security against replay, splicing, and spoofing bus

attacks in external memories. However, the existing schemes that

use memory integrity trees suffer from high computational over-

heads [5] [7] as they do not address the impact of the system’s per-

formance for traversing large trees. This poses an enormous security
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challenge as embedded systems generally have tight computational

constraints with real-time requirements.

In an integrity tree, the memory contents are stored in the leaf

nodes after encryption/hashing. A hierarchical tree structure is built

on top of the leaf nodes by recursively applying a primitive authen-

tication technique (e.g. MAC, hash). Authentication of a leaf node

would involve verification of each node against its parent node, from

the leaf node up till the root of the tree. A copy of the root, stored

on-chip, is assumed to be safe from attack. After the final step of

successfully verifying the root node with its copy on-chip, data is

considered safe and forwarded to the data cache. The whole process

which entails verification at each level of the tree, increases the ex-

ecution time substantially. One of the earlier versions of integrity

tree is the Bonsai Merkle tree [8]. A number of variations have

been proposed to the original Merkle tree in order to enhance the

performance with size, cost, and complexity trade-offs [3]. One such

approach is using a dedicated TreeCache for caching the integrity

tree [2]. However, such approaches may lead to overall performance

degradation due to cache contention. Using a large TreeCache to

reduce the cache misses of the tree nodes becomes prohibitive for

low-cost embedded systems.

In this paper, we propose a cache-aware memory integrity tree

organization to fully take advantage of a dedicated TreeCache to

reduce the memory bandwidth for verification. In order to further

reduce the memory authentication overhead, we propose a method

called Cache-aware Dynamic Skewed Tree (CADST) that leverages

the proposed memory layout to move the frequently accessed nodes

closer to the root node of the integrity tree at run time. This led to

further reduction in the overall number of verification levels.

2 SECURITY MODEL
In Fig. 1, we present the security design model. The memory con-

troller (MC) is responsible for the authentication process. It consists

of of the following sub-parts:
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Figure 1: Security design model
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(1) Encryption/Decryption Unit: We employ AES-128 as the

encryption standard. This unit can be implemented as a hard-

ware custom block to accelerate encryption/decryption.

(2) Integrity Checker (IC): Each tree node is matched to its parent

node. In case of a mismatch, an alarm is raised.

(3) Root Node: A copy of the root node of the tree is stored on-

chip and is assumed to be safe. The final requirement for data

to be considered safe is that the root node of the tree must

match with the root value stored on-chip.

The process of authentication begins with a read/write request sent

to an address in the Protected Data region of the memory.

(1) The leaf node corresponding to that specific address is for-

warded to the AES unit for decryption followed by verifica-

tion.

(2) For verification, a request to access the parent node in the

Integrity Tree region is initiated by the MC for the TreeCache.

The latter can lead to the following outcomes:

• Request sent to TreeCache is met with a cache hit: TreeCache
stores the decrypted data. Thus the requested node value can

be directly sent to the Integrity Checker for matching.

• Request sent to TreeCache is met with a cache miss: The
node is then forwarded from the Integrity Tree region of the

external memory to the AES unit for decryption. Once de-

crypted, it is then sent to the Integrity Checker to be matched

with its child node.

The above mentioned steps are performed recursively till we reach

the root node of the tree. The root node is compared against the root

value stored on-chip and if they match, data is passed to the data

cache for processing. In case of a write request, MC will then initiate

a command to re-structure the tree.

3 PROPOSED CADST FRAMEWORK
3.1 Baseline
In this work, we have chosen Tamper Evident Counter (TEC) tree as

our baseline. TEC tree provides security using Block AREA (Added

Redundancy Explicit Authentication) technique. Tree nodes can be

divided into two categories, Data chunk and Counter chunk, which

store either data or count values respectively. A nonce, which is

unique to each node, is added to each tree node before encryption.

Nonce comprises of a count, and address of each node. Count value,

representing the number of write requests performed on each node, is

added to detect replay attacks. For an authentication to be successful,

the count values of any given node must match with the value stored

in its immediate parent node. An important advantage of the TEC

tree is it relies on block encryption for authentication which provides

for confidentiality at no additional cost. Encrypted data is resilient

towards stolen memory attacks as well. Although we have chosen

TEC tree as our baseline due to the above-mentioned advantages, the

proposed technique can be adapted to different versions of integrity

trees (e.g. Hash Trees, Merkle Tree), and is complementary to prior

works based on caching tree-nodes and increasing arity. The original

TEC tree does not cache tree nodes. We have implemented TEC tree

with caching of tree nodes on a dedicated TreeCache.

To design integrity trees that can take advantage of a dedicated

TreeCache, the most straightforward approach is to enforce the size

of the tree nodes to be the same as a single cache line (CL). For

example in SGX, the granularity of the Memory Encryption Engine

(MEE) is fixed to 512 bits (same as CL size) and the MEE tree

data structure is designed based on this constraint. In integrity trees

employing AES block encryption, continuous memory addresses are

segregated into blocks and a fixed number of blocks are combined

to meet the CL size. These blocks are encrypted/decrypted together.

3.2 Proposed Tree Node Structure
For the proposed tree structure, the Protected Data are divided into

equal sized blocks and each block is used to create a single Data

Chunk (DC) as can be seen in Fig. 2. A DC comprises of data con-

catenated with a nonce value as shown in Fig. 2. Nonce is created

using a count value, ci. This value equals the number of write re-

quests made to the DC. ci concatenated with the node ID, ni, making

the nonce unique to each node. Other attributes of the DC are as

shown in Fig. 2. pi, si, LRi denote the parent, sibling, side of ni
respectively. pi stores the node ID of the parent and si stores the

node ID of the sibling of ni. LRi denotes whether the node is a left

child or a right child to its parent. These attributes help in skewing

the tree as discussed later in Section 3.4. Each node has a separate

counter. This makes overflow of counters a rare scenario. All the

DCs are encrypted using block AES-128 encryption and are stored
in the Protected Data region of memory.

The counter, ci, are stored in the off-chip memory in a hierar-

chical tree structure. In the rest of the paper, we refer to Counter

Chunk (CC) as a block where the counters are stored. Each CC also

comprises of its own nonce and other attributes, similar to that of

a DC. An entire CC is encrypted as a single block before being

stored off-chip in the Integrity Tree region of external memory. This

scheme is recursively applied to subsequent levels of the tree to

form CCs till we obtain a single CC, called the root node of the tree.
The count of the root node is stored securely on-chip. Thus, the tree

structure helps to reduce the on-chip memory overhead to a single

root node, while providing full memory integrity.
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Figure 2: Standard memory integrity tree structure

3.3 Initializing Tree Structure with Cache aware
Organization

We start with a binary tree of height h, which is equal to logN, for a
tree with N elements. Conceptually, we split the edges at the middle
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level of the tree, between nodes of height h/2 and h/2 + 1. This

partitions the tree into a top recursive sub-tree A of height h/2, and
several bottom recursive sub-trees B1, . . . , Bk of height h/2. If all

non-leaf nodes have the same number of children, then there will be√
N recursive sub-trees at the bottom, each with roughly

√
N nodes.

After splitting, we group all the upper sub-tree elements followed by

lower sub-tree elements. The vEB layout is recursively applied to

each sub-tree. At each step of recursion, size of the sub-tree being
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Figure 3: Proposed vEb memory integrity tree structure

grouped is the square-root of the size of the sub-trees in the previous

step. Consequently, at some point we will be grouping sub-trees that

can be retrieved in a single memory transfer, and this final partition

creates a tree with sub-trees of size equivalent to a single CL.

The vEB version of the standard memory integrity tree in Fig 2

is shown in Fig. 3. The node ID of the CCs differ in both the trees.
We use the vEB layout as the starting point of our tree. Based on

this layout, the cache lines will be filled as shown in Fig. 3. It can be

observed that for the proposed vEB memory integrity tree structure,

both child and parent node will be cached in the same line. This

reduces number of cache misses during a memory access because

during verification, the parent of a child node is always accessed.

Note that the proposed layout of the memory integrity tree is cache

aware with the exception of the assumption that each sub-tree is

aligned with the cache block boundaries.

3.4 Proposed Dynamic Skewing of Integrity Tree
Skewing operation is performed after write requests. We check if the

ci value of a given chunk is similar to its neighbourhood. If a chunk

has higher ci value than its immediate neighbours, then it should

be shifted one level up, closer to the root node. In this manner, we

are able to reduce the height difference between the node and the

root. This reduces the number of verifications to be performed. The

ShiftUp operation is performed before nodes are cached so that upon
eviction, they are placed at their most recent position. In order to

take advantage of the proposed memory layout, ShiftUp must take
into consideration that the nodes forming a single sub-tree need

to be kept intact in order for the cache misses to remain minimal.

To avoid this, the re-structuring operation should be performed on

sub-trees and not singular tree nodes. The re-balancing process and

verification process happen concurrently. The decrypted counter

chunks are checked for re-balancing during the verification process.

All changes are made prior to re-encrypting the nodes at the end of

the verification process.

ShiftUpSubTree: Let T be the sub-tree to be checked for shifting.
And let Q be its parent sub-tree. We should note here that the count

of a sub-tree is equal to the count of its root node. The process of

shifting is as shown in Fig. 4.

(1) Check if, ci, of T is greater than its corresponding sibling sub-

tree count, c j , by 1, and is also greater that its uncle sub-tree

count, ck.

(2) Exchange node T with its uncle sub-tree.

(3) Exchange the new children sub-trees of Q.

(4) Update the counter value of all the nodes of Q.

(5) Recursively perform steps 2-4 for all sub-trees on the path

from T to the final sub-tree with the root node.

AB

C

B C

A

B A

C

(a) (b) (c)

Figure 4: Shifting up sub-tree C: a) Exchanging C with uncle A,
(b) rotation, (c) final state

3.5 Authentication
To avoid cache contention, we use a separate TreeCache on-chip

to store the tree meta-data. Algorithm 1 describes the steps for

verification on the integrity tree.

Algorithm 1: Dynamic Skewed Tree

begin
Initialize tree with all data elements as data chunk on leaf

nodes

if (memory access request(addr)) then
if read_request(addr) then

ReadNCheck(addr)

end
if write_request(addr) then

ReadNCheck(addr)

WriteNUpdate(addr)

Rebalance_flag← rebalance_check(addr);

end
if Rebalance_flag then

ShiftUpSubTree(addr);

end
end

end
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ReadNCheck: This function is called when there is a read request
sent to the Protected Data region that has not been cached and thus

requires verification.

(1) Call the requested DC’s parent CC. If it is cached in the
TreeCache, return the cached data for matching. The process

completes, otherwise

(2) Fetch CC from external memory.

(3) Forward decrypted CC to IC for verification. If verified, place

the contents of the child chunk into the TreeCache and pro-

ceed to verify the parent chunk (note that this step only applies

when a CC is being verified).

(4) Repeat Step 1 until a cache hit is encountered or the root node

is reached.

(5) If root node verifies correctly, return the requested data.

WriteNUpdate: This function is called when there is a write re-
quest sent to the Protected Data region that is not cached and thus

requires verification.

(1) Call the requested DC’s parent CC. If it is cached, return the
cached data for matching. Also, increment the ci value. The

process completes, otherwise

(2) Fetch CC from external memory, increment ci.

(3) Check for ShiftUpSubTree.
(4) Place modified decrypted CC in TreeCache and forward to

IC for verification.

(5) Repeat Step 1 until a cache hit is encountered or the root node

is reached.

(6) If root node verifies correctly, return the requested data.

WriteBack: This function is performed upon eviction of a dirty
CC from the TreeCache.

(1) Update the CC in the external memory.

(2) Recursively update the parent CCs, if not cached, up till the
root with the new ci values.

4 EXPERIMENTAL RESULTS
For our evaluations, we simulated applications from SPEC-CPU2006,

SPLASH-2, and PARSEC benchmark suites on Multi2Sim [9]. We

ran the benchmarks for four different tree architectures with a dedi-

cated TreeCache: 1) Conventional Balanced TEC Tree (BTEC) [4],

2) Cache Aware Balanced TEC Tree (CABTEC) 3) Dynamic Skewed

Tree (DST) [10, 11], 4) Proposed Cache Aware Dynamic Skewed

Tree (CADST). BTEC [4] is a balanced integrity tree employing

block-level AREA encryption as described in Section 3.1. CABTEC

is BTEC tree implemented with the vEB layout in memory. DST [10]

skews the tree nodes depending on frequency of access with the most

frequently access closer to the root. The DST implementation does

not employ the vEB memory layout. CADST is the proposed method

where we initialize the DST with the vEB layout and use ShiftUp-
SubTree to skew the tree during run time. We have presented results
for four different TreeCache configurations i.e. 16Kb and 8KB size

with 128, 64 byte cache lines.

Authentication Time. Fig. 6 compares the normalized perfor-
mance of all four models. Our performance metric is based on the

run time required to perform the memory authentication. It can be

observed that incorporating a cache-aware memory layout for the

balanced integrity tree (CABTEC) can reduce the authentication

Table 1: Architectural parameters used in simulations

Architectural Parameters Specifications

Clock Frequency 1 GHz

Data Cache 256 KB

TreeCache 16KB/8KB

Cache Latency 4

Replacement Policy LRU

Write Policy Write Back

External Memory Latency 100

AES Latency 40

time by approximately 14% compared to BTEC. By introducing

the dynamic skewed tree mechanism which leverages on the cache-

aware memory layout, the proposed CADST achieves an average

speedup of approximately 25% and 17% over BTEC and CABTEC

respectively. When compared to the DST method without cache-

aware memory layout, the proposed CADST method achieves a

performance overhead reduction of approximately 15%.

It is evident that the benefits of the proposed method depends

on the application and its workloads. The height of the balanced

integrity trees range from 11 to 26 levels. Large trees obviously

results in a lot of storage and run time overhead, and thus such

application always have a higher potential for improvement. Also,

for memory intensive applications such as Lu_cb, Mcf, Omnetpp,

Xalancbmk, and Gcc (≥1 memory access per 1000 instructions), the
benefit from skewing are more pronounced. Fig. 6 shows the effect

of varying the TreeCache size and the block size on the performance.

In general, a larger cache reduces the number of off-chip accesses

and overall execution time of applications. Having a larger cache

line also reduces the overhead of memory verification due to the

reduction in the levels of the integrity tree. We should also consider

the number of times the average number of CCs are accessed per
DC. As such, we analyzed the memory traffic bottlenecks due the

CC accesses, which is main cause of overhead. Fig. 5(a) shows the

memory traffic bloat (counter accesses per data access) for all the

models. CADST being more cache friendly, reduces the burden of

the authentication and makes fewer access from the external memory

for the CCs in all the applications. The improved performance due to
the vEB layout is also highlighted in the difference between BTEC

and CABTEC models.

TreeCache Miss Ratio. Fig. 5(b) compares the TreeCache miss
ratio between the proposed model and DST with a 16KB size and

64B cache line size. We can observe that the 16KB cache performs

better than an 8KB cache for both the models, as expected. But on

average, the miss ratio improves further by 20% for the model with

vEB structure which can directly be attributed to the customized

memory organisation.

Custom Instructions. Custom instructions (CI) enable the accel-
eration of time critical software algorithms by introducing custom

hardware blocks that are tightly-coupled to the Arithmetic Logic

Unit (ALU). To reduce the latency of encryption/decryption during

memory integrity verification, we evaluate the performance bene-

fits of implementing the 128-bit mix-column AES algorithm as a

custom instruction [6]. For our future work, we plan to develop a
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Figure 5: a) CCs per DC accessed, b) TreeCache miss ratio

programmable memory controller that consists of processors with

custom ISAs that can be adapted to the memory workloads in order

to reduce energy consumption [1]. As such, we have evaluated the

benefits of integrating a custom hardware AES module that is tightly

coupled with the processor in the memory controller. The advantages

of this method is the flexibility of implementing different encryp-

tion/decryption techniques without the need for re-designing a new

memory controller. As can be observed in Fig. 6, the utilization of

CI’s has reduced the authentication time of all the models.

5 CONCLUSION
This paper proposes a dynamic skewed tree implemented with cache

aware algorithms. The nodes in the tree are placed based on their

frequency of access and are cached in a separate TreeCache on-chip.

The tree layout is initialized with a vEB organization to reduce the

memory-cache accesses and the skewing algorithm shifts memory

blocks which form sub-trees so as to maintain minimal number of

cache misses during tree traversal. Experimental results demonstrate

that the proposed cache aware memory layout for a balanced integrity

tree improved performance by approximately 14%. When a cache

aware dynamic skewed tree model is utilized, a gain of about 25%

can be achieved over the conventional balanced integrity tree model.
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(d)

Figure 6: Run time for memory authentication with a) 16KB TreeCache, 64B cache line, b) 16KB TreeCache, 128B cache line c) 8KB
TreeCache, 64B cache line d) 8KB TreeCache, 128B cache line 407
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