
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

Framework for Fast Memory Authentication Using
Dynamically Skewed Integrity Tree

Saru Vig , Member, IEEE, Rohan Juneja, Student Member, IEEE, Guiyuan Jiang , Member, IEEE,
Siew-Kei Lam, Member, IEEE, and Changhai Ou, Member, IEEE

Abstract— Integrity trees are widely used in computer systems
to prevent replay, splicing, and spoofing attacks on memories.
Such mechanisms incur excessive performance and energy over-
head. We propose a memory authentication framework that
combines architecture-specific optimizations of the integrity tree
with mechanisms that enable it to restructure at runtime based
on memory access patterns. The integrity tree structure is
customized based on the cache configuration in order to min-
imize the performance and energy overhead through speculative
authentication. At runtime, the tree nodes that are accessed more
frequently will be dynamically shifted closer to the root such that
fewer levels of the tree are accessed during authentication. The
framework is simulated with Multi2Sim and compared with other
existing mechanisms [i.e., tamper-evident counter (TEC) tree and
ASSURE] to demonstrate its performance and energy benefits.
Experimental results using benchmarks from SPEC-CPU2006,
SPLASH-2, and PARSEC show that the proposed dynamic
integrity tree leads to an average reduction in instruction per
cycle of 13% and 10% over TEC tree and ASSURE, respectively.
The corresponding average reduction in authentication time
is 30% and 20%, respectively. We show that the proposed
framework facilitates the selection of a processor with a smaller
cache size such that the energy consumption is reduced without
sacrificing performance.

Index Terms— Access patterns, cache, dynamic tree, memory
integrity, Multi2Sim.

I. INTRODUCTION

EMBEDDED systems have become a pervasive part of
our lives and are the driving force behind technological

advancements in many commercial sectors, such as health,
automotive, and instrumental control. Due to our high depend-
ability on such systems, it is crucial that they are secure
and cannot be tampered with. This poses an enormous chal-
lenge as such systems are generally energy-constrained, and
the existing security schemes contribute to excessive energy
consumption. Thus, we need techniques that are capable of

Manuscript received December 19, 2018; revised April 8, 2019 and
June 1, 2019; accepted June 8, 2019. This work was supported in part by
the National Research Foundation Singapore under its Campus for Research
Excellence and Technological Enterprise (CREATE) programme with the
Technical University of Munich at TUMCREATE. (Corresponding author:
Saru Vig.)

S. Vig, G. Jiang, S.-K. Lam, and C. Ou are with the School of Computer Sci-
ence and Engineering, Nanyang Technological University, Singapore 639798
(e-mail: saru001@e.ntu.edu.sg; gyjiang@ntu.edu.sg; assklam@ntu.edu.sg;
chou@ntu.edu.sg).

R. Juneja is with Qualcomm, Bangalore 560048, India (e-mail:
rohan14156@iiitd.ac.in).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2019.2923004

providing security without excessive energy and performance
overhead.

Memory is an integral part of all embedded systems that
become an obvious target for attackers whose motives are to
exploit leakage or modification of information. In addition,
securing sensitive data on computers is rapidly becoming a
matter of high urgency. There are numerous schemes that have
been reported for mitigating memory attacks [1], [2]. These
methods inevitably make use of some form of encryption
and a memory integrity tree. Memory contents are stored
in the leaf nodes of an integrity tree and are authenticated
whenever any access is made to them. The authentication
process compares each node against its parent node (using a
primitive authentication function) recursively up till the root.
All such models are built with the assumption that the on-chip
memory is safe and the root node is stored on-chip, where it
cannot be tampered with. An authentication step for each level
of the tree necessitates multiple memory accesses of nodes.
This is repeated up till the root where the final authentication
step is made with the root node that is stored on-chip. This
results in a performance overhead for memory accesses that
are directly proportional to the height of the tree.1

The main contribution of this paper is a framework that
combines architecture-specific customization of the integrity
tree with runtime mechanisms for reducing the performance
and energy overhead of memory authentication. The former
tailors the leaf node structure of the tree based on the cache
configuration of the target processor in order to take advan-
tage of speculative authentication and also to maintain cache
line granularity of memory accesses. At runtime, the tree is
dynamically skewed such that frequently accessed data are
moved closer to the root. This minimizes the authentication
steps of the frequently accessed data, resulting in an overall
reduction in instruction per cycle (IPC) and energy over-
head compared with the existing methods. We performed the
experiments on benchmark applications with varying degree
of workloads and memory access patterns to demonstrate the
performance/energy gains of our proposed method.

Given an application that needs to be protected against
memory attacks, the proposed framework that combines
cache-aware integrity tree structure design and a mechanism
to dynamically skew the tree is able to select a suitable cache
configuration to minimize energy consumption. We show that
this can lead to over 40% energy savings without sacrificing

1The maximum height of a tree is logk n, where n is the number of leaf
nodes to be protected and k is the arity or number of children for a node.

1063-8210 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7592-6970
https://orcid.org/0000-0002-1398-821X

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

performance. In some cases, energy savings and performance
gain can be concomitantly achieved. We perform the experi-
ments with a dedicated TreeCache on-chip to store the con-
tents of the tree. In such scenarios, verification is terminated
whenever a node is found in the cache, as cache contents are
considered safe. The proposed method still manages to achieve
timing gains compared to a balanced tree.

This paper is organized as follows. Section II discusses
the related work. Section III describes the threat model,
and Section IV introduces the proposed memory integrity
tree structure and framework. Section V introduces the tree
restructuring algorithm, and Section VI discusses the security
aspects. The experimental results and discussions are presented
in Section VII. We conclude this paper in Section VIII.

II. RELATED WORK

Securing memories often makes use of an integrity tree.
One of the earlier versions of the integrity tree is the Bonsai
Merkle tree [3]. Merkle trees are one-way trees based on a
cryptographic message authentication code (MAC) function.
Each data node is stored along with its MAC value and is
verified whenever it is read from the memory. The Bonsai
Merkle tree uses address independent seed encryption and
reduces the memory storage requirements by creating the
tree over counters rather than MAC’s data. A number of
variations have been proposed to the original Merkle tree
in order to enhance the performance with size, cost, and
complexity [1] tradeoffs. Intel′s SGX incorporates a memory
encryption engine (MEE) [4] that uses a hash tree with a
tweaked version of the Advanced Encryption Standard (AES)-
128 for authentication. The design has been incorporated in
the sixth-generation Intel Core processor. The memory engine
uses a balanced Merkle Tree for data integrity alongside
proven cryptographic bounds for the confidentiality of data.
For performance enhancement, they have a dedicated cache
for storing tree data. The tamper-evident counter (TEC) tree
proposed in [5] employs the block-level added redundancy
explicit authentication (AREA) as their protection mechanism.
The block-level AREA performs block encryption on the tree
nodes, both data and counters. Hence, data confidentiality
is provided at no extra cost. In a TEC tree, the nodes are
composed of D‖N (‖-concatenation operation), where D is the
data/counter of k-bits and N is an n-bit nonce (number only
used once). A nonce consists of the address and a counter,
which depicts the number of times a write operation has been
performed on that address. After encrypting this node, it is
near impossible to distinguish the D and N in the ciphertext.
If the content of a tree node is flipped by one bit, there is
a very high probability that the last n-bits of the nonce are
different from the original nonce. This probability depends on
the nonce size, n.

Although the above-mentioned methods provide protection
to the memory, they incur high-performance overhead as
traversing the integrity trees during authentication requires
numerous memory access. These methods do not address the
impact of the system’s performance for traversing large trees.
The works in [6] and [7] suggest the means to reduce the
depth of the integrity tree by using a different counter config-

uration and increasing arity of the tree. Saileshwar et al. [6]
designed a tree with 128-arity, and hence, they are able to
considerably reduce the depth of integrity trees for securing
large memories. For protecting a 16-GB memory, they were
able to reduce the tree size to four levels. However, the use of
larger arity in order to obtain shallow integrity trees introduces
additional problems, such as frequent counter overflowing,
which increases the overhead of the scheme. In addition,
the success of methods that rely on increasing the tree arity
is dependent on the counter nodes being cached efficiently,
as this contributes to reducing the number of counter writes
and overflows. However, caching counter nodes is not always
possible, especially for system with tight constraints.

In addition, approaches that rely on caching the tree nodes
have reported the overall performance degradation due to
cache contention [8], as storing the metadata of the tree nodes
in caches for large trees consumes substantial memory space.
In particular, [8] reported that unless the cache is reasonably
big, the tree nodes will occupy 25%–50% of the cache,
leading to a large number of cache misses. Lee et al. [9] sug-
gested using a type-aware dynamic cache insertion technique,
i.e., Dynamic Insertion Policy [10] and Bimodal Insertion Pol-
icy [11], to improve the caching efficiency. However, it is diffi-
cult to find the best technique for any given application without
a considerable static analysis. Moreover, a caching strategy in
itself does not tackle the problem of tree size. These methods
should be used orthogonally, in addition to other techniques to
avail maximum benefits. None of the methods discussed earlier
use memory access patterns to improve the performance.

ASSURE [12] employs smart MACs and dual root trees to
provide for memory security. The tree reduces the authenti-
cation steps by creating a smaller subtree within a standard
binary tree. The smaller subtree has its roots closer to the leaf
node. Thus, authenticating the leaf nodes of the smaller subtree
requires fewer verification steps. Conceptually, the memory is
divided into groups called memory block groups (MBGs) of
continuous memory locations. One of the MBGs is denoted
as HOT and the remaining MBGs are denoted as COLD. The
HOT MBG consists of memory locations that are frequently
accessed. A subtree is built for the HOT MBG with its root
stored on-chip. The remaining memory locations form the
COLD MBGs with their root being the main tree root. Thus,
at any given time, two roots are stored securely on-chip. The
HOT MBG is dynamically adjusted based on the memory
access patterns. The number of MBGs for a given memory,
n, is pre-determined. On the one hand, a large value of n
will limit the size of each MBG, which may result in frequent
accesses outside of the HOT MBG. On the other hand, smaller
values of n result in larger subtrees, which increases the
authentication steps of the HOT MBGs. In ASSURE, a mech-
anism is used to predict the next HOT MBG after a fixed
number of accesses based on the counter value that is associ-
ated with each MBG. Another factor that is pre-determined
is how frequently a new HOT MBG is predicted. Predict-
ing the HOT MBG over large intervals may not guarantee
the most frequently accessed locations in HOT MBG at all
times, while predicting too frequently will only marginally
affect the performance, especially for workloads with poor

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

VIG et al.: FRAMEWORK FOR FAST MEMORY AUTHENTICATION USING DYNAMICALLY SKEWED INTEGRITY TREE 3

spatial locality. Although Rakshit and Mohanram [12] have
provided the recommended values for n and the prediction rate,
these cannot be generalized across different applications and
workloads. The predetermined value of n and the prediction
rate will also not be applicable to workloads with highly
random-access patterns.

In [13], we introduced a static-skewed integrity tree where
the tree is constructed offline based on the frequency of
memory accesses derived from static application profiling.
Tree nodes that are accessed frequently are placed closer to
the root based on the static application profiles. However,
the tree structure remains unchanged at runtime. Although this
paper demonstrated the performance advantages of skewing
a tree based on the application workload (about 18% lower
performance overhead over the TEC tree), the method is only
applicable to scenarios where the memory access patterns
of the applications are known beforehand, which is highly
unlikely in practical applications.

In [14], we presented our initial approach for dynamically
skewing the integrity tree at runtime based on the memory
access patterns. This is achieved by placing data elements with
the same memory access frequency together in a single set,
with each set being treated as a single unit for encryption. Each
set is associated with a frequency, and data elements migrate
among the sets as their access frequency changes. Although
this method achieved higher performance gains compared
to [13], it suffered from several drawbacks, which restricts
the method from practical realization. First, the number of
data elements that can be grouped in a set is limited by the
size of the encryption blocks. This could lead to scenarios
where multiple sets are associated with the same frequency
and the tree nodes cannot be optimally placed in the tree
structure to reduce the authentication steps. This leads to
additional complexity during tree traversal and results in fewer
performance gains. Second, the method in [14] requires an
additional on-chip memory overhead in the form of a lookup
table (LUT) to retrieve the tree locations in memory. This
storage overhead is considerable. If the number of nodes of
the tree is N, the memory overhead of the LUT is (3∗ log2 N)
bits. Finally, the designs of our tree structures in [13] and [14]
are agnostic to the cache, and the experiments were undertaken
with the assumption that the target system does not have a
cache. Moreover, only the runtime gains were measured and
the power and energy were not evaluated.

The following highlights the novelties of this paper com-
pared to our prior works in [13] and [14].

1) Memory Authentication Framework: Our proposed
framework in this paper overcomes the limitations of
our prior work with an entirely different tree structure
design for dynamically skewing the tree at runtime
compared to [14]. We introduce a new node structure
for the memory integrity tree that contains all the
necessary information to perform dynamic restructur-
ing of the tree based on the memory access patterns.
Unlike [14], the new node structure and the grouping
of data elements in continuous memory address into a
single leave node, remove the need for a large LUT, and
enable the integrity tree to be restructured dynamically

with low-performance overhead. Unlike [13], we do not
require any offline static analysis to be performed on the
applications. In addition, unlike the work in [12], our
integrity tree does not conform to any rigid parameters
and, hence, it is able to adapt more effectively to the
dynamic memory access patterns. This is achieved by
maintaining a separate counter for each leaf node that
is incremented on each write request.

2) Cache-Aware Tree Structure: The designs of our tree
structures in [13] and [14] are agnostic to the cache, and
the experiments were undertaken with the assumption
that the target system does not have a cache. The pro-
posed framework in this paper customizes the integrity
tree node structure based on the cache configuration
of the target processor to take advantage of specu-
lative authentication. In addition, the number of data
elements in a leaf node is determined based on the
cache line size. This scheme exploits the data locality
of reference, where during a cache line replacement,
only a single authentication step is made for multiple
data elements that are likely to be accessed in the near
future. An example is shown in Fig. 2, where data
from four successive memory locations have been com-
bined to form one leaf node. Such a design is suitable
for a cache configuration with a 512-bit cache line.
In Section VII-B, we show that the proposed framework
provides the advantage for choosing the systems with
smaller caches to minimize energy consumption without
compromising performance.

3) Experiments: Finally, in Section VII, we perform the
extensive simulations of our framework on systems
with varying cache configurations using applications
from the SPEC-CPU2006, SPLASH-2, and PARSEC
benchmarks. Our prior works in [13] and [14] were
not evaluated with such intensive workloads. Moreover,
only the runtime gains were reported and the IPC and
power/energy were not evaluated.

III. SECURITY MODEL AND OBJECTIVES

This paper is concerned with bus attacks that aim to
perform unauthorized reading or tampering of data stored
in an external (untrusted) memory. As such, countermeasure
must be in place to preserve data confidentiality by encrypting
the data with a secret key and storing the key in a secure
location, e.g., on-chip memory. In addition, data authentication
methods are necessary to detect the following widely known
data tampering attacks.

1) Spoofing: Attacker exchanges a memory block with a
tampered one.

2) Splicing: Attacker replaces the memory block at address
A with a memory block at address B, where A �= B .

3) Replay Attacks: Attacker records data at an address and
inserts it at the same address at a later point in time.
Thus, the present value of the data is replaced by an
older value.

While side-channel attacks are beyond the scope of this
paper, we wish to briefly discuss its security impact on
our approach. In side-channel attacks, the attacker measures

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 1. Security design model.

side-channel information leakage, such as power or timing
to decipher encryption keys being used for authentication.
Unterluggauer et al. [15] demonstrated the feasibility of cache
side-channel attacks on systems employing a standard memory
integrity tree. A cache-based side-channel analysis falls into
one of two main categories: trace-driven attacks [16] where
individual cache hits and misses yield information, and time
driven attacks [17] where the aggregate number of misses
and, hence, the execution time of the algorithm give similar
information. We wish to highlight that the security of cache
attacks on systems employing standard memory integrity tree
(see [15]) and the proposed dynamic-skewed integrity tree in
this paper is the same due to the following reasons. First,
the cache characteristics (hits and misses) will not differ in
both methods as long as the grouping of data elements in leaf
nodes is the same. This is because only the data elements
are cached and the contents of the integrity tree are not. The
proposed skewed integrity tree only reduces the time taken to
traverse the integrity tree for authentication. It is still stored in
the external main memory. Second, any side-channel analysis
of the tree cannot give information about the keys as the keys
are not stored in the tree. Only by studying the cryptographic
algorithm used, attackers can deduce such information. The
success of a side-channel attack is independent of the structural
format of the tree. We have used the standard cryptographic
algorithm of AES, and its execution and the processing times
do not change due to the proposed changes in the organization
of the tree. Thus, there is no additional leakage of information
to aid an attacker performing side-channel analysis. Unter-
luggauer et al. [15] also proposed the prevention methods
against side-channel attacks on systems with memory integrity
tree. This entails some masking procedure for the keys or
employing more rigorous mechanisms, such as updating keys
in short intervals. Such mechanisms can also be employed
in our proposed dynamic-skewed integrity tree structure as
countermeasures against side-channel attacks.

A. Overview of Proposed Security Model

In Fig. 1, we show our security design model. The model
consists of a memory controller (MC) that is responsible for
data authentication. The entire memory can be split into three
distinct regions: a section consisting of sensitive data that need

protection (i.e., Protected DATA), a section of unprotected
data, and a region for storing the integrity tree. The protected
data and the integrity tree region will be encrypted with AES.

An integrity tree consists of equal-sized blocks of data
known as nodes that are organized in a tree structure. The
root of the tree (which holds the root value) is stored in the
first level and also on-chip (i.e., root node in MC). The nodes
on the last level are known as leaf nodes that are stored in the
protected data region. The remaining nodes comprising of the
counter nodes are stored in the integrity tree region. The tree
operations after a read/write request is sent to the protected
data region can be described as follows with the help of Fig. 1.

1) The leaf node corresponding to the data address
requested is sent to AES for decryption

2) MC sends a request to the integrity tree to obtain the
parent of the node that was just decrypted.

3) The parent node is sent to AES for decryption.
4) Once both the child and parent nodes are decrypted,

they are verified by the integrity checker. Steps 2–4 are
repeated until the root of the tree is reached. If verifica-
tion fails in any one of these steps, an alarm is triggered.

5) The root of the tree is matched with the root node stored
on-chip. In case of mismatch, an alarm is raised.

6) If verification is successful, the data requested root in
Step 1 is sent to the cache. Any further accesses to this
address will be made from the cache itself and thus will
not need to be verified again.

7) Update: If the request in step 1 is a write request,
an update command will be sent from the MC to the
Integrity Tree region to restructure the tree. The details
of this procedure will be discussed in Section V.

The detailed description of the tree construction and verifica-
tion will be discussed in Section IV-A.

IV. PROPOSED DYNAMIC INTEGRITY TREE STRUCTURE

The proposed dynamic integrity tree adopts the principles of
the TEC tree [5], which provides both data confidentiality and
integrity. In this section, we describe the modifications made to
the balanced TEC tree (BTEC) [5] to enable dynamic skew-
ing. As discussed earlier, the TEC tree employs the AREA
technique at the block level, where redundant data (a nonce)
are added to each tree node before encryption and checked
after decryption. Since TEC tree relies on block encryption
to construct the tree, it provides data confidentiality without
any additional latency by using the hardware already in place
for integrity verification. This advantage makes it possible to
employ the TEC tree even for non-volatile memories (NVMs)
that face stolen memory attacks due to their data remanence
properties. It is worth mentioning that the proposed method
for dynamically skewing the integrity tree can also be applied
to other existing forms of memory integrity trees. We will
introduce the new tree node specifications and its design in
Section IV-A and Fig. 2. This improved framework will have
explained further with the help of an example in Section IV-C.

A. Integrity Tree Model

In the rest of this paper, we use the term data chunk (DC)
to refer an atomic block for authentication. In order to reduce

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

VIG et al.: FRAMEWORK FOR FAST MEMORY AUTHENTICATION USING DYNAMICALLY SKEWED INTEGRITY TREE 5

Fig. 2. Dynamic integrity tree structure.

the overhead of data verification, the processor should be able
to easily obtain a parent’s address from the node’s address.
Thus, the DCs have been modified to enable quick access to
this information. The DC can be broadly split into two parts:
1) plaintext or data and 2) nonce. The attributes of a DC are
shown in Fig. 2. Let ni denote the node ID of the i th node on
the tree. pi , si , L Ri , and ci denote the parent, sibling, side,
and count of write access of ni , respectively. pi stores the
node ID of the parent and si stores the node ID of the sibling
of ni . L Ri denotes whether the node is a left child or a right
child to its parent. ci denotes the frequency of write access
made to the data stored in ni . ci is a local counter dedicated
to a specific chunk rather than a global counter. This is to
minimize counter overflows. A counter overflow will require
all the encryption keys to be re-generated, and hence, utilizing
local counters can help extend the lifetime of the encryption
key.

Multiple encrypted DCs are combined to form a leaf node
for the tree. The number of DCs that are grouped in a leaf node
depends on the cache line size. Also, the data elements of the
same leaf node are from consecutive memory addresses. Dur-
ing authentication, data verification is first performed on a leaf
node. When there is a cache miss, the full leaf node that has a
size equivalent to the cache line is transferred to the cache after
authentication. This implies that all the DCs in the leaf node
have to be verified even though an access is made to only one
of them. Each DC in the leaf node is decrypted sequentially
followed by authentication with the parent node. Note that
each DC in a leaf node will have the same parent lineage
since they are associated with consecutive memory addresses.
As most applications exhibit the locality of reference, the other
DCs in the same leaf node that has been authenticated and their
decrypted data elements are in the cache, which will likely be
accessed in the near future. As such, speculative verification

of the data is performed to reduce the authentication
overhead.

The verification starts by decrypting the DC to obtain the
counter part of the nonce. The counter values are also stored
in the off-chip memory in a tree structure. In the rest of this
paper, we refer to counter chunk (CC) as a block where the
counter part of the nonces is stored with its own nonce. The
entire CC is encrypted as a single block before being stored
off-chip. The layout of the CC and DC is shown in Fig 2.
A block-level AREA scheme is recursively applied to the
subsequent levels of the tree to create CCs with redundant data
being added to them. Finally, we obtain a single CC called the
root node of the tree. The root value is also stored securely
on-chip.

The main objective of the recursive procedure described
earlier, which creates the tree structure, is to reduce the on-chip
memory overhead to a single root node while providing full
memory integrity.

B. Authentication

1) Block Encryption: We implement the block-level AREA
with AES encryption as our authentication primitive on b-
bit size DC and CC, comprising l bits of data concatenated
with n bit nonce, with an encryption key K. The probability
of detecting a flipped bit in the DC depends on the size of
the nonce. The probability that the decrypted chunk remains
the same after tampering is 1/2n . Thus, having a reason-
able size nonce is crucial to maintain the security of the
system.

2) Reading and Writing to DCs: Whenever the data are read
from or written to memory, the tree performs the functions of
ReadNCheck and WriteNUpdate, as shown in Algorithm 1.

a) ReadNCheck: In case a read request to an address
in the protected area is sent, the leaf node comprising the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Algorithm 1 Dynamic Skewed Tree

requested DC is decrypted along with its parent node. Once
decrypted, a nonce is extracted from all the DCs on that
leaf node. For authentication, pi of the DCs and ni of their
parent CC along with their ci values are matched. If the
comparisons are successful, the process is recursively repeated
for all the parent nodes until the root. Finally, ci of the root
node is verified against the value stored on-chip. If this last
verification is successful, the data are considered to be safe
and are forwarded to the cache.

b) WriteNUpdate: When a write request is sent to an
address in the protected area, the leaf node comprising of that
DC is loaded and decrypted. This is followed by a verification
of the leaf node with a ReadNCheck function. Once verified,
the data slot of the specific requested DC is updated and the
ci values of all the DCs are incremented by 1. The parent
CCs also needs to be updated with the new counter values.
This process of first verifying the nodes before updating is
carried out for the entire branch from the leaf node to the root
node. Verification is performed to prevent adversaries from
inserting fake data onto a node before the write, with the
motive of corrupting parts of the node which are not affected
by the write. Once updating is complete, a check is performed
to determine whether rebalancing is required based on the ci

values of nodes. The procedure for rebalancing is discussed
in Section V.

C. Example

As an example, we consider the tree shown in Fig. 2.
We implement AES-256 encryption. The DC and the CC
are 256-bit blocks. In the case of DC, 128-bit data are
concatenated with a 128-bit nonce. The CC has two 64-
bit counters concatenated with a 128-bit nonce. We consider
a cache line size of 512 bits. Thus, as shown in Fig. 2,
we combine four DCs to form one leaf node (128 data bits ×
4 = 512) so that 512 bits of verified data can be passed after
one complete round of leaf to root authentication. In the event
of a cache miss, four DCs are verified and the data extracted
from these nodes is transferred to the cache. As these four DCs
are always transferred and evicted together to/from the cache,
they share the same count and have a common parent storing

Fig. 3. Shifting up tree node C. (a) Exchanging C with uncle A. (b) Rotation.
(c) Final state.

their ci values. This format has been adopted to keep the
address calculations simple, keeping in mind the constraints
due to the required nonce size, AES block size, and cache line
size.

V. DYNAMIC TREE RESTRUCTURING

Initially, when the protected data have not been accessed,
the proposed dynamic tree structure is similar to the standard
two-ary binary tree since all the leaf nodes have the same
probability of occurrence. At runtime, the tree is progressively
restructured to place leaf nodes that are more frequently
accessed closer to the root to reduce the overall authentication
time.

Algorithm 1 describes the steps for verification on the
integrity tree. During verification, when memory requests for
the protected region arrive at the MC, the integrity checker
performs verification/updating depending on whether it is
a read or write request. The verification is performed by
matching the counter values of nodes against their parent
values recursively until the root node. The change in the parent
nodes will also not affect the data stored off-chip. This is due
to the fact that the protected data and the integrity tree data
are stored in different memory regions, as shown in Fig. 1.

On a write request, after increasing the count value ci , it is
checked whether rebalancing should be performed or not. Two
important factors to be taken into consideration are when and
how should the tree be re-balanced. We adopt the following
criterion used in [18]:

if (ci > (csi + 1) ∧ (ci > cspi
)) then rebalance.

The above-mentioned criterion states that if the count of a
node is greater than the weight of its sibling node by at least 2
and is greater than the weight of its uncle node, then it should
be relocated. The algorithm used to perform rebalancing has
been described in Algorithm 2. The rebalancing process and
the verification process happen concurrently. When the CCs
are decrypted during the verification process, they are checked
for rebalancing. The changes made are on the counter nodes
before they are reencrypted at the end of the verification
process. The idea is based on the principle that leaf nodes with
a higher probability of occurrence (based on the ci values) are
shifted up closer to the root node. This is achieved in two steps,
as shown in Fig. 3: 1) exchanging subtree with its uncle and
2) rotation.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

VIG et al.: FRAMEWORK FOR FAST MEMORY AUTHENTICATION USING DYNAMICALLY SKEWED INTEGRITY TREE 7

Algorithm 2 ShiftUp {T : Pointer to Tree node}

A. Implementation Example

We consider an example shown in Fig. 4 to provide
some insight into the internal working of a dynamic tree.
We begin with the tree structure shown as TREE 1 with its
leaf nodes placed in a skewed manner. The table below each
figure describes the elements stored in that particular tree.

1) TREE 1: Tree nodes 1–3 and 6 are CCs and the remain-
ing (4, 5, and 7–9) are leaf nodes comprising of multiple DCs.
Nodes 4, 5, and 7 having a higher count value than nodes 8
and 9 are placed one level higher on the tree. We consider
the following order: 9 → 5 → 5 for the subsequent write
requests.

2) TREE 2: Based on the access sequence, the next node to
be accessed is 9. Thus, the count value of node 9 along with
its parent is incremented by 1. This makes it eligible to be
considered for rebalancing. As the count of node 9 is greater
than its sibling’s count (node 8) by 2 and it is also greater than
its uncle’s count (node 7), it successfully meets the rebalancing
criterion. After performing the rebalancing operation, the tree
takes up the form of TREE 2 in Fig. 4. We can observe
that node 9 has been shifted up by one level and node 7 has
been pushed down by one level. The rebalancing criterion is
checked for nodes 3 and 6 as well but is not met.

3) TREE 3: Next node to be accessed is node 5. This
increases the count of nodes 5–9. Again, the rebalancing
criterion is checked. As it is not yet eligible (its count is
greater than its sibling by only 1), the rebalancing operation
is not performed. Parent of node 2 is also checked against the
criterion, but it is not eligible.

4) TREE 4: node 5 is then accessed again, increasing its
count to 10. With this, the rebalancing criterion for node 5 is
met. Thus, after the rebalancing operation, the tree takes up
the form of TREE 4 in Fig. 4. Node 5 has been pushed one
level up to level 2, and the remaining nodes are pushed one
level below. Node 4 is still on level 3. The remaining nodes,
i.e., 7–9, have been pushed one level down.

B. Analysis of Overhead

In this section, we analyze the storage and performance
overhead of the proposed method in comparison to the
TEC-tree implementation.

Fig. 4. Implementation example.

1) Memory Overhead: The memory overhead for the base-
line TEC tree and the proposed method is as follows:

OBTEC = l p + nBTEC

l p(A − 1)
(1)

OProp = l p + nProp

l p(A − 1)
(2)

where l p is the data bits in the DC, n are the nonce
bits, and A is arity. Due to the additional attributes of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

parent and sibling required for the proposed method as
discussed in Section IV-A, the nonce size differs for both
methods by 2*log2 N bits as follows:

nBTEC = count + log2 N (3)

nProp = count + 3 ∗ (log2 N) (4)

where N is the maximum number of tree nodes and
count is the counter value size.
All integrity tree designs will typically incur additional
memory overhead (about 1–2 times of the actual data
protected). Although the proposed method incurs a
slightly higher memory overhead than the TEC tree in
order to facilitate fast tree traversal, the cost of this
additional storage is not significant since the content
of any integrity tree (i.e., MAC, hashes, and encryption
counters) is always stored in the external memory.

2) Update (Shift-Up) Procedure: For every write request
on a memory address protected by the tree, an update
procedure had to be performed recursively on all nodes
from the leaf node until the root. This recursive checking
to update add to the overall time required for authentica-
tion. In spite of this additional overhead, we are able to
achieve performance gain over the balanced tree. This
can be attributed to the fact that verification in itself
is a recursive process, where each node on the path
from data to the root has to be verified. The verification
process includes decrypting/encrypting the tree nodes,
which in itself is computationally intensive. The relative
overhead caused by the update procedure is small as it
only involves changing pointers for the node attributes.
As shown in our experiment results, we are able to
achieve the reported timing performance gains despite
this overhead.

VI. SECURITY ANALYSIS

Spoofing attacks are detected by making use of the block
AREA scheme [19]. Under this scheme, we add redundant data
(i.e., nonce) to our original data blocks before encryption. The
nonce is checked during the verification step after decryption.
The diffusion property of encryption engines ensures that any
change on the data will be reflected after decryption as the
nonce obtained would have changed. Any mismatch would
raise an alarm in the system.

Splicing attacks are detected at the first level of verification
itself. The node ID, ni , of the fetched parent chunk is matched
against the parent ID, pi , of the child node. The node number
is also matched with the address being requested (address =
tree base address + node number). This ensures that there is
no address mismatch.

Replay attacks are prevented due to the property of the
nonce that is unique to each location. If an address is replayed,
the nonce values of the replayed version and the current
version will not match. Thus, the attack would be detected at
the first non-replayed node. If the entire tree has been attacked,
the last verification step of matching the root node with the
on-chip counter will trigger the alarm.

VII. EXPERIMENTAL RESULTS AND DISCUSSION

Our earlier implementations were evaluated only on FPGAs
that had limited memory and no caches. For this work, we have
implemented and evaluated our framework on a system simu-
lator, Multi2Sim. For our evaluations, we used 12 benchmarks
from the SPLASH-2, PARSEC, and SPEC-CPU2006 bench-
mark suites on Multi2Sim [20]. The Multi2Sim simulator inte-
grates a number of useful features, such as separate functional
and timing simulation, multithreading and multiprocessor sup-
port, and cache coherence. Multi2Sim is an application-only
tool intended to simulate x86 binary executable files. Our
experiments were undertaken using a single-core system,
with a single fully associative cache utilizing a write-back
policy and a least recently used (LRU) replacement policy.
We will present the results for six different cache configu-
rations, i.e., 256-kb, 1-Mb, and 4-Mb cache with 64- and
128-byte cache lines. The main memory latency has been
used with 100-cycle latency, 1.4 GHz, and 8 B/cycle. As
memory authentication contributes to significant overhead in
the execution time, we measured the time required to perform
integrity checking, i.e., encryption/decryption and verification.
In addition to comparing our work with the work in [5], since
we modify their basic framework, we have even compared our
work with the work in [12] to highlight the effectiveness of
this paper. To the best of our knowledge, [12] is the only work
other than ours that tackle the problem of tree size by taking
advantage of memory access patterns.

We ran the benchmarks for three different tree architectures:
1) BTEC [5]; 2) ASSURE [12] which is adapted to the TEC
tree format; and 3) proposed dynamic skewed tree (denoted
as Proposed). Note that all the implementations are based on
the TEC tree format to ensure fairness in the evaluations.
In addition, block encryption with cache line granularity is
applied to all the methods for fair evaluations. AES encryp-
tion/decryption latency has been considered to be 40 clock
cycles. In order to ensure fair comparisons, all the trees adopt
an arity of 2.

A. Authentication Time

The authentication time is directly proportional to the
number of tree levels accessed for the integrity verification
of a leaf node. We have measured the authentication time
for six different cache configurations with varying cache
size and cache line sizes. The time taken to perform the
integrity check is minimum for the proposed dynamic skewed
tree for all the benchmarks, as shown in Fig. 5. The tim-
ing gain achieved varies for each application based on its
memory usage pattern. From the results, it is evident that
moving the nodes closer to the root reduces authentication
time as both ASSURE and Proposed design performed better
than BTEC. The proposed method has, on average, 35%
lower integrity check runtime over BTEC and 18% lower
runtime over ASSURE. The proposed dynamic skewed tree
performs better than ASSURE due to its higher degree of
adaptability where the placement of each leaf node is based
on the individual count value of the leaf node rather than

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

VIG et al.: FRAMEWORK FOR FAST MEMORY AUTHENTICATION USING DYNAMICALLY SKEWED INTEGRITY TREE 9

Fig. 5. Authentication time (in ms) for 12 different applications with varying cache configurations.

on the MBG as in the ASSURE architecture. As expected,
it can also be observed that larger cache leads to improved
performance.

The benefits of skewing a tree are application-dependent.
In particular, the gains are mainly affected by the number of
memory writes. This is due to the fact that the counter values

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 5. (Continued.) Authentication time (in ms) for 12 different applications with varying cache configurations.

TABLE I

MEMORY ACCESS PATTERNS

are incremented on every write followed by a rebalancing
check (see Algorithm 1). Thus, a large number of memory
writes will lead to more frequent skewing that increases the
overhead of verification.

The memory patterns of all the applications are shown
in Table I. The proposed method achieved high gains for
applications that are sufficiently large with a substantial num-
ber of memory accesses. Such applications will result in trees
with many levels for the BTEC implementation. The proposed
dynamic skewed tree can effectively lower the overhead in

verification for these applications by reducing the average
number of tree levels during authentication.

We have included mcf, omnetpp, xalancbmk, and gcc work-
loads from SPEC2006 in our evaluations, as they have high
memory traffic (≥1 memory access per 1000 instructions) and
random data accesses. It can be observed that for these bench-
marks, the proposed scheme leads to an average reduction of
authentication time of about 33% and 19% over ASSURE
and BTEC, respectively. Other interesting observations are
applications, such as Radiosity that has a large number of
memory accesses, that do not benefit as much from the
proposed method. This is because the majority of requests
are writes, which are substantially higher than the reads.
In this scenario, the system spends significant time performing
the rebalancing operation leading to higher overhead. It is
noteworthy that even with this increased overhead, the pro-
posed method still achieves a gain of 30% over ASSURE and
25% over BTEC. The remaining three applications, Radix,
Cholesky, and Ocean_cp, are relatively smaller with fewer
number of accesses made to the main memory. This results
in a compact integrity tree with better cacheability of entries
on-chip. If a part of the protected region is in the cache,
it is considered safe and hence not verified. This results in
fewer number of verifications. Such nonmemory intensive
workloads with infrequent tree traversals have limited potential
for reduction in authentication time. Thus, the benefits of
skewing the tree are limited (on average 15% over ASSURE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

VIG et al.: FRAMEWORK FOR FAST MEMORY AUTHENTICATION USING DYNAMICALLY SKEWED INTEGRITY TREE 11

TABLE II

4-MB BALANCED VERSUS 1-MB PROPOSED

TABLE III

1-MB BALANCED VERSUS 256-KB PROPOSED

and 20% over BTEC). Among these three applications, Radix
seems to benefit the most from the proposed method. This can
be attributed to its memory access pattern, where accesses have
a random nature without much temporal locality. This results
in considerable memory traffic during integrity tree traversal as
there is limited reuse of the cache entries. Applications, such
as Radix, can attain high benefits from dynamically skewed
trees due to the reduced number of authentication levels. It can
be observed that Radix achieves on average a gain of about
38% over BTEC.

Finally, Fig. 5 shows the effect of varying the cache size and
the block size on the performance. In general, a larger cache
reduces the number of off-chip accesses and overall execution
time of applications. Having a larger cache line also reduces
the overhead of memory verification due to the reduction in
the levels of the integrity tree.

B. Energy

This is the first time that we perform energy evalua-
tions for our work. We perform energy evaluations using
multicore power, area, and timing (McPAT). McPAT is
an integrated power, area, and timing modeling framework
for multithreaded, multicore, and manycore architectures.

The simulations are performed using the same system con-
figurations and technology as Multi2Sim.

The results in Tables II and III compares the total runtime
and energy consumption of the eight applications when they
are executed using the BTEC and the proposed method for
memory authentication. Each row in Tables II and III shows
the runtime and energy consumption for the BTEC running
on a system with a larger cache size compared with the
proposed method. For example, in Table II, the BTEC method
is executed on a system with 4-MB cache, while the proposed
method is executed on a system with 1-MB cache. Similarly,
Table III compares the runtime and energy consumption when
the BTEC is executed on a system with 1-MB cache, while
the proposed method executes on a system with only 256-kB
cache. The fourth and seventh columns in Tables II and III
report the percentage reduction in runtime and the percentage
energy savings of the proposed method over BTEC. It can
be observed that for all the applications considered, the pro-
posed method has almost a similar (≤6% decrease) or better
performance over BTEC even though the former is executed
on a system with the significantly smaller cache. For Radix
and Raytrace, the proposed method achieve almost 30% and
15% lower runtime, respectively. For all the cases considered,
the proposed method leads to energy reduction due to the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 6. (a) IPC Comparison. (b) Authentication time (in ms) for integrity trees with TreeCache.

use of a smaller cache. This reduction can be over 43% in
certain applications. Similar results are also observed when
the proposed method is compared with ASSURE. Although
the gains are not as significant, the proposed dynamic skewed
tree was still able to achieve energy savings at the cost of
slight or no performance loss.

The combined advantages of the proposed integrity tree
structure (which was designed in a cache-aware manner) and
our proposed mechanism to dynamically skew the tree result in
comparable performance with the existing memory authentica-
tion methods that require almost double the cache size. Hence,
our memory authentication method provides the advantage
for choosing systems with smaller caches to minimize energy
consumption without compromising performance.

C. Instruction Per Cycle

Fig. 6(a) shows the impact of memory verification on
the overall application performance in terms of IPC for a
system with 256-kB cache and 64-byte cache line. For all
the different benchmarks, the IPC of the tree schemes is
shown with AES implemented as custom instructions. It can
be observed that the proposed method achieves an average
IPC improvement of 13% over the balance tree and 10% over

ASSURE. The maximum gain is close to 50% for Radix.
Smaller applications, such as Ocean_cp, show the minimum
gain.

D. TreeCache Sensitivity Analysis

As discussed in Section II, the authentication overhead of
the memory integrity trees can be reduced by using a dedicated
TreeCache for caching the tree nodes. In order to study the
impact of using TreeCache, we implemented the proposed
design with a TreeCache and compared its performance with
the BTEC model that also has a TreeCache. In the presence of
a TreeCache, authentication of the leaf node stops as soon as
we encounter a tree node that is cached. For our evaluations,
we used a system with 256-kB data cache and 64-byte cache
line. The size of the TreeCache is 16 kb with the 64-byte cache
line. It can be observed in Fig. 6(b) that the authentication
time of the proposed method is reduced by approximately 20%
compared with BTEC.

VIII. CONCLUSION

We presented a memory authentication framework
for dynamically skewed integrity tree, which combines

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

VIG et al.: FRAMEWORK FOR FAST MEMORY AUTHENTICATION USING DYNAMICALLY SKEWED INTEGRITY TREE 13

architecture-specific optimization of the integrity tree structure
with runtime mechanisms to minimize the authentication
overhead. A new node structure is proposed, which enables
the integrity tree to be restructured dynamically with
low-performance overhead. Compared with the existing
integrity tree methods that are also based on exploiting
memory access patterns, the proposed integrity tree is able
to adapt more effectively to the dynamic memory access
patterns by maintaining a separate counter for each leaf
node. Experiments show that the proposed method achieves
the highest performance gains over the existing methods
for reasonably large applications where the majority of the
memory accesses are reads. We also show that the proposed
framework is able to select a suitable cache configuration
to minimize energy consumption. Extensive simulations on
systems with varying cache configurations using applications
from SPEC-CPU2006, SPLASH-2, and PARSEC benchmarks
show that the proposed framework leads to a significant
reduction in authentication time compared with the existing
methods. For our future work, we plan to develop a
programmable MC that consists of processors with custom
ISAs that can be adapted to the memory workloads in order
to reduce energy consumption.

REFERENCES

[1] R. Elbaz, D. Champagne, C. Gebotys, R. B. Lee, N. Potlapally, and
L. Torres, “Hardware mechanisms for memory authentication: A survey
of existing techniques and engines,” in Transactions on Computational
Science IV. Berlin, Germany: Springer, 2009, pp. 1–22.

[2] D. Lie et al., “Architectural support for copy and tamper resistant
software,” ACM SIGPLAN Notices, vol. 35, no. 11, pp. 168–177, 2000.

[3] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using
address independent seed encryption and bonsai merkle trees to make
secure processors OS-and performance-friendly,” in Proc. 40th Annu.
IEEE/ACM Int. Symp. Microarchitecture, Dec. 2007, pp. 183–196.

[4] S. Gueron, “A memory encryption engine suitable for general purpose
processors,” IACR Cryptol. ePrint Arch., 2016, p. 204.

[5] R. Elbaz, D. Champagne, R. B. Lee, L. Torres, G. Sassatelli, and P.
Guillemin, “Tec-tree: A low-cost, parallelizable tree for efficient defense
against memory replay attacks,” in Proc. Int. Workshop Cryptograph.
Hardw. Embedded Syst. Berlin, Germany: Springer, 2007, pp. 289–302.

[6] G. Saileshwar, P. Nair, P. Ramrakhyani, W. Elsasser, J. Joao, and
M. Qureshi, “Morphable counters: Enabling compact integrity trees for
low-overhead secure memories,” in Proc. 51st Annu. IEEE/ACM Int.
Symp. Microarchitecture (MICRO), Oct. 2018, pp. 416–427.

[7] M. Taassori, A. Shafiee, and R. Balasubramonian, “VAULT: Reducing
paging overheads in SGX with efficient integrity verification structures,”
in Proc. 23rd Int. Conf. Architectural Support Program. Lang. Oper.
Syst., Mar. 2018, pp. 665–678.

[8] B. Gassend, G. E. Suh, D. Clarke, M. Van Dijk, and S. Devadas,
“Caches and hash trees for efficient memory integrity verification,” in
Proc. 9th Int. Symp. High-Perform. Comput. Archit., (HPCA), Feb. 2003,
pp. 295–306.

[9] J. Lee, T. Kim, and J. Huh, “Reducing the memory bandwidth overheads
of hardware security support for multi-core processors,” IEEE Trans.
Comput., vol. 65, no. 11, pp. 3384–3397, Nov. 2016.

[10] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adap-
tive insertion policies for high performance caching,” ACM SIGARCH
Comput. Archit. News, vol. 35, no. 2, pp. 381–391, 2007.

[11] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer, “High
performance cache replacement using re-reference interval prediction
(RRIP),” ACM SIGARCH Comput. Archit. News, vol. 38, no. 3,
pp. 60–71, 2010.

[12] J. Rakshit and K. Mohanram, “ASSURE: Authentication scheme
for SecURE energy efficient non-volatile memories,” in Proc.
54th ACM/EDAC/IEEE Design Automat. Conf. (DAC), Jun. 2017,
pp. 1–6.

[13] S. Vig, T. Y. Tzer, G. Jiang, and S.-K. Lam, “Customizing skewed trees
for fast memory integrity verification in embedded systems,” in Proc.
IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2017, pp. 213–218.

[14] S. Vig, G. Jiang, and S.-K. Lam, “Dynamic skewed tree for fast memory
integrity verification,” in Proc. Design, Automat. Test Eur. Conf. Exhib.
(DATE), Mar. 2018, pp. 642–647.

[15] T. Unterluggauer, M. Werner, and S. Mangard, “MEAS: Memory encryp-
tion and authentication secure against side-channel attacks,” J. Crypto-
graph. Eng., vol. 9, no. 2, pp. 137–158, Jun. 2019.

[16] D. Page, “Theoretical use of cache memory as a cryptanalytic
side-channel,” IACR Cryptol. ePrint Arch., vol. 169, pp. 1–47,
Jun. 2002.

[17] Y. Tsunoo, “Crypt-analysis of block ciphers implemented on computers
with cache,” in Proc. ISITA, Oct. 2002.

[18] S. Pigeon and Y. Bengio, “A memory-efficient adaptive Huffman coding
algorithm for very large sets of symbols,” in Proc. Data Compress. Conf.
(DCC), Mar. 1998, p. 568.

[19] C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst.
Tech. J., vol. 28, no. 4, pp. 656–715, 1949.

[20] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2Sim:
A simulation framework for CPU-GPU computing,” in Proc. 21st Int.
Conf. Parallel Architectures Compilation Techn. (PACT), Sep. 2012,
pp. 335–344.

